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• Derivation of Diffusion Models + Image Editing Applications (Last Lecture)

• Markov Hierarchical Variational Auto Encoders (MHVAE)
• Diffusion Models are VAEs with Linear Gaussian Autoregressive latent space

• ELBO for Diffusion Models is a particular case of ELBO for VAEs with extra structure
• Implementation Details
• Latent Diffusion Models (Stable Diffusion) + Controllable generation 

• A Different Viewpoint of Diffusion Models (Today’s Lecture)

• Denoising Score Matching

Diffusion Models



Connection with DDPM and Score-based Models

SDE Perspective
(1982)

DDPM 
 (2020)

Score-based models
(2020)



Generative Modelling via Score Functions
• Goal: Draw samples from 𝑝 𝑥
• Rich history of sampling methods (MCMC, particle filter, etc.) – we won’t cover these

• So far: Learning 𝑝 𝑥  by assuming latent variable model

• Recall PPCA, GMM, VAE, HMM, LDS, DDPM

• Sampling is easy, since one can sample latent variables 𝑧 and then 𝑥 from 𝑝(𝑥|𝑧)

• Today: Instead of learning 𝑝(𝑥) directly, we can turn to learn ∇! log 𝑝 𝑥
• This quantity is known as the score function

• Challenges

• Sampling: Even if we had access to score function, how do we draw samples from 𝑝 𝑥 ?

• Score Estimation: How can we estimate score function from data?

• Diffusion: What does this have to do with diffusion models?



• The score function ∇! log 𝑝 𝑥  is a vector field that points to the direction of 
steepest increase in log-likelihood at any given point in data space

Sampling: Intuition for Score Function

Data distribution on ℝ!
Darker colors indicate higher probability density 

The arrows indicate the score 
function vector field – they point 

towards the mode



• Simple sampling strategy: start at any point in data space and take some steps in 
the direction of the score function (gradient ascent)

𝑥"#$ = 𝑥" + 𝜂 ,∇! 	log	𝑝 𝑥
!%!!

• If 𝜂 → 0, this process is described by the Ordinary Differential Equation (ODE)
𝑑𝑥 = ∇! 	log	𝑝 𝑥 𝑑𝑡

• However, the trajectories of this ODE converge to samples from only the modes 
of the distribution: i.e., the ODE does not explore lower probability regions

Sampling: Naïve Idea

Different Samples Empirical Density of Samples 𝑝 𝑥



• French physicist Paul Langevin proved exploration can be done by adding noise

𝑑𝑥 = ∇! 	log	𝑝 𝑥 𝑑𝑡 + 2𝐵"

• This gives a Stochastic Differential Equation (SDE), where the Brownian motion 𝐵"  
is Gaussian noise with infinitesimally small variance:

𝑑𝐵" = 𝑑𝑡	𝑧	, 𝑧	~	𝑁(0, 𝐼)

• Langevin proved that, as 𝑡 → ∞, the solutions to the SDE visit each 𝑥 with 
probability 𝑝(𝑥). That is, this process draws samples from 𝑝(𝑥)!

Sampling: Insights from Physics

Different Samples Empirical Density 𝑝 𝑥



• Theorem: Consider the Langevin dynamics

𝑑𝑥 = ∇! 	log	𝑝 𝑥 𝑑𝑡 + 2𝐵"

where 𝐵"  is Brownian motion

𝑑𝐵" = 𝑑𝑡	𝑧	, 𝑧	~	𝑁(0, 𝐼)

The process (𝑋")"&' defines a Markov diffusion that admits 𝑝 𝑥  as a unique 
invariant distribution. Moreover, if 𝑝"  denotes the distribution of 𝑋", then

𝑝" →
"→)

𝑝,

i.e., the distribution of 𝑋"  converges to 𝑝 as 𝑡 → ∞.

Langevin Dynamics Convergence Theorem



• Langevin dynamics resemble a reverse process: start with samples from a simple 
distribution such as 𝑁 0, 𝐼  and solve Langevin equation to get sample from 𝑝 𝑥

𝑑𝑥" = ,∇! 	log	𝑝 𝑥
!%!!

𝑑𝑡 + 2𝐵"

• However, we don’t know the distribution 𝑝(𝑥), hence we don’t know the score 
function ∇! 	log	𝑝 𝑥 . All we have are samples from 𝑝(𝑥). 

• How can we estimate the score function ∇! 	log	𝑝 𝑥  from samples 𝑝(𝑥)? Can we 
train a deep network that predicts the score by minimizing a reconstruction loss?

argmin*
1
2
𝐸!~,(!) 𝑠* 𝑥 − ∇! log 𝑝(𝑥) /

/

Sampling as a Reverse Process



• Challenge 1: Inaccurate score estimation in low data density regions

• Solution: Perturb data with various levels of Gaussian noise, which ”fills” in low density 
regions of the space

• Challenge 2: How do we optimize this because we don’t have ground truth score 
data to train on? 
• Solution: Clever manipulation of score function that we will see later

Challenges with Learning Score Function
argmin"

1
2𝐸#~%(#) 𝑠" 𝑥 − ∇# log 𝑝(𝑥) !

!



• We can arrive at the forward process mathematically by simply inverting the 
Langevin equation

• Instead of starting at 𝑁(0, 𝐼) and drawing samples from 𝑝 𝑥 , what if we just 
start from 𝑝 𝑥 , and follow score of standard Gaussian, and end at 𝑁 0, 𝐼 ?

𝑑𝑥 = ∇! log𝑁 0, 𝐼 𝑑𝑡 + 2𝑑𝐵" 	
= −𝑥	𝑑𝑡 + 2𝑑𝐵"

• Recall that 𝑑𝐵" = 𝑑𝑡	𝑧	, 𝑧	~	𝑁(0, 𝐼). After discretizing we get:

𝑥"#0" = 1	 − 𝑑𝑡 𝑥" + 2𝑑𝑡	z

• Looks like the forward process we already know! 

Perturbing Data: Forward Process



Back and forth from GMM to Normal distribution



• We have shown that with the score function given, we can draw samples from 
the underlying data distribution using the Langevin equation

• We described the forward process to get a learning objective (for all t)

argmin*
1
2
𝐸!~,(!) 𝑠* 𝑥, 𝑡 − ∇!! log 𝑝(𝑥") /

/

• Next: How to actually learn this without ground truth access to the score 
function? 

Summary so Far



• From the forward process, we generated data   

𝑥" = α"𝑥' + 1 − α" 	𝜖,	 ϵ ∼ 𝒩 ϵ; 0, 𝐼  
• Let’s cleverly rewrite the score function given this
	 ∇!!log 𝑝 𝑥" =

∇!!𝑝(𝑥")
𝑝(𝑥")

                               = #
$ !!

∫∇%"p x& x')p x' 	𝑑𝑥'	

                       = #
$ !!

∫𝑝 𝑥" 𝑥')∇%"log	p x& x')p x' 	𝑑𝑥'	

	 = 	=∇%"log	p x& x')p x'|𝑥" 	𝑑𝑥'	

	 = 	=
?𝛼"𝑥' 	− 𝑥"
1	 − ?𝛼"

p x'|𝑥" 	𝑑𝑥'	

	 =
?𝛼"𝐸 𝑥' 𝑥"] 	− 𝑥"

1	 − ?𝛼"

Rewriting the Score Function



• Plugging into our objective before and simplifying, we have

argmin(
1
2
𝐸!!~$(!!) 𝑠( 𝑥, 𝑡	 −

?𝛼"𝐸 𝑥' 𝑥"] 	− 𝑥"
1	 − ?𝛼"

,

,

argmin(
1
2
𝐸!!~$ !! ,!#∼$ !# !!) 𝑠( 𝑥, 𝑡	 −

?𝛼"𝑥' − 𝑥"
1	 − ?𝛼"

,

,

argmin(
1

2(1	 − ?𝛼")
𝐸!!	,!#~$ !!,!# 𝜖( 𝑥, 𝑡	 − 𝜖 ,

,

• We have a way to estimate the score without ever needing ground truth score, 
which is remarkable

• Moreover, this is exactly our denoising objective from diffusion models! 

• Maximizing our ELBO is equivalent to learning the score function at 𝑥4!

Denoising Score Matching



Learning Score Function Example



• It unifies diffusion model forward process as following Langevin equation to 
transform data distribution into Gaussian distribution

• Different noise schedules just correspond to how fast this transition is

• Connects learning denoisers with estimating the score function, which we can 
then use to sample from the distribution

• Allows us to naturally think of continuous-time diffusion models

• Our rewriting of the score function is called Tweedie’s formula

• Can use it to solve 𝐸[𝑥5|𝑥4] given the score function – one step denoising 

• Precisely what is used in DDIM to predict the 𝑥5

• Conditional Sampling becomes straightforward (see next slide)

Why is this viewpoint useful?



• Conditional Sampling: Sample from 𝑝 𝑥 ∣ 𝑦  where 𝑦 is another image, text, etc. 

• The score function for this distribution can be obtained via Bayes rule 
∇!! log 𝑝 𝑥" 𝑦) = ∇!! log 𝑝 𝑦	 𝑥") + ∇!! log 𝑝(𝑥")

• The second term is already modelled by a unconditional diffusion model!

• For the first term, we could use a classifier. This is known as classifier guidance, 
where we scale the effect of classifier by some factor 𝛾 in front of the first term

Conditional Diffusion Models - Guidance



• Classifier Guidance required access to a classifier that can handle noisy inputs

• Classifier-free Guidance allows us to do guidance without training any auxiliary 
classifiers

∇!! log 𝑝O 𝑥" 𝑦) = 𝛾∇!! log 𝑝 𝑦	 𝑥") + ∇!! log 𝑝(𝑥")
= 𝛾(∇!! log 𝑝 𝑥" 𝑦) − ∇!! log 𝑝(𝑥")) + ∇!! log 𝑝(𝑥")

= 1	 − 𝛾 ∇!! log 𝑝 𝑥" + 𝛾∇!! log 𝑝 𝑥" 𝑦)

• 𝛾 > 1 is found to be the regime that works well

• Train a diffusion model with conditioning dropout: some percentage of the time 
(10-20%), just remove the conditioning information, so the model learns to be 
both a conditional and unconditional model

Classifier Free Guidance



Classifier Free Guidance Results

Seems to work better 
than classifier guidance 
because the “classifier” 
is constructed from the 
generative model itself



• We saw how diffusion models implicitly learn the score function and perform 
reverse process sampling using the Langevin equation
• Connects to many core topics in stochastic differential equations and clean mathematical 

derivations

• Used the score function viewpoint to easily derive guidance (classifier and 
classifier-free) for conditional sampling from diffusion models

• Three great resources for more information

• ICLR Blogpost – Building Diffusion Models Theory From Scratch (https://iclr-
blogposts.github.io/2024/blog/diffusion-theory-from-scratch/)
• Sander Dieleman Blog – Guidance: A Cheat Code for Diffusion Models 

(https://sander.ai/2022/05/26/guidance.html) 

• See references in the blog posts

Conclusion

https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://sander.ai/2022/05/26/guidance.html


Fall Semester 2025

René Vidal
Director of the Center for Innovation in Data Engineering and Science (IDEAS)

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Deep Generative Models:
Diffusion Models – SDE perspective



Stochastic Differential Equation (SDE) view

 

  

Forward SDEData Prior DataReverse SDE

  

Forward SDE Reverse SDE

Forward Probability ODE Reverse Probability ODE
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Figure from “Score-based generative modeling through stochastic differential equations, Song, et.al. 2020”.



• SDE is a differential equation in which one or more terms are stochastic 
processes.

• 𝜇(𝑥" , 𝑡) is called as the drift coefficient and 𝜎(𝑥" , 𝑡) is called the diffusion 
coefficient.
• 𝑤"  is called the Weiner process and has the following properties:

1. Initial zero condition: 𝑤' = 0 almost surely.
2. Independent increments: For every 𝑡, 𝑢 ≥ 0,  the increments 𝑤"/0 − 𝑤" are independent of 𝑤1 for 𝑠 < 𝑡.
3. Gaussian increments: For every 𝑡, 𝑢 ≥ 0, the increments 𝑤"/0 − 𝑤" ∼ 𝒩(0, 𝑢𝐼) . 
4. Continuity paths: 𝑤" is continuous in 𝑡 almost surely.

• How to obtain 𝑥"  given 𝑥'? 
𝑥" − 𝑥' = =

'

"

𝜇 𝑥", 𝑡 𝑑𝑡

Lebesgue	integral

+ =
'

"

𝜎 𝑥", 𝑡 𝑑𝑤"

Itô	integral	

Stochastic Differential Equation

𝜇, 𝜎 should be Lipschitz continuous in (𝑥, 𝑡) 
for the existence and uniqueness of SDE solution.

𝑑𝑥" = 𝜇 𝑥" , 𝑡 𝑑𝑡 + 𝜎 𝑥" , 𝑡 𝑑𝑤"



Example of SDEs
• Two distinct cases for the drift and diffusion coefficients in the process

 𝑑𝑥" = 𝜇 𝑥" , 𝑡 𝑑𝑡 + 𝜎 𝑥" , 𝑡 𝑑𝑤"

Figure from “Mathematics of Diffusion Models, CVPR 2025 Tutorial, Richard Hartley”.

𝑑𝑥( = 𝑑𝑤(

SDE with zero drift 
the process is purely stochastic.

𝑑𝑥( = 𝜇 𝑥( , 𝑡 𝑑𝑡

SDE with zero diffusion
the process is purely deterministic.



Reversal of the diffusion process
• Brian Anderson showed this in 1982 which later became a building block in 

score-matching diffusion models introduced in 2020.
• The forward SDE 

𝑑𝑥4 = 𝜇 𝑥4, 𝑡 𝑑𝑡 + 𝜎 𝑥4, 𝑡 𝑑𝑤4, 	 𝑥5 ∼ 𝑝5 
   has the time-reversal equation:

   with 𝑥5< ∼ 𝑝=, and 𝑤4, 𝑤4  being independent Weiner processes.

𝑑𝑥() =
∇# 𝑝 𝑥*+() , 1 − 𝑡 ⋅ 𝜎 𝑥*+() , 1 − 𝑡 !

𝑝 𝑥*+() , 1 − 𝑡 − 𝜇 𝑥*+() , 1 − 𝑡 	 𝑑𝑡 + 𝜎 𝑥*+() , 1 − 𝑡 𝑑𝑤(	

Figure from “https://cvpr2022-tutorial-diffusion-models.github.io/”.
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• Set 𝜇 𝑥, 𝑡 = − $
/

1 − 𝛼" ⋅ 𝑥c, and 𝜎 𝑥, 𝑡 = 𝑁 1 − 𝛼" 	for some sufficiently 
large integer 𝑁.

• We have the forward process: 𝑑𝑥" = − $
/

1 − 𝛼" ⋅ 𝑥" 𝑑𝑡 + 𝑁 1 − 𝛼" ⋅ d𝑤".

• Now we discretize the time with 𝑁 scales: 𝑡 = d
e

, and Δ𝑡 = $
e

.

• We can write 𝑑𝑥" ≈ 𝑥d#$ − 𝑥d, 

𝑑𝑥" ≈ 𝑥d#$ − 𝑥d = − $
/

1 − 𝛼d ⋅ 𝑥d Δ𝑡+ 1 − 𝛼" ⋅ 𝜖d ,

𝑥d#$ = 1 − $
/

1 − 𝛼d 𝑥d + 1 − 𝛼" ⋅ 𝜖d  

• Let 𝑁 → ∞, then we have 1 − $
/

1 − 𝛼d ≈ 1 − 1 + 𝛼d = 𝛼d. 

• Finally, we have 𝑥d#$ ≈ 𝛼d𝑥d + 1 − 𝛼d𝜖d , which is the same as DDPM.

SDE         DDPM 𝜖, ∼ 𝒩(0, 𝐼)



• The forward process in DDPM is given by
𝑥"#f" = 𝛼"𝑥" + 1 − 𝛼" 	𝜖" ,

   where 𝑡 goes from 0 to 1, Δ𝑡 = $
e

 , and 𝑁 is the number of noise scales.

• Define X𝑎 𝑡 = (1 − 𝛼")/Δ𝑡.
• In the limit as 𝑁 → ∞, we have

𝑥"#f" = 1 − X𝑎 𝑡 Δ𝑡 ⋅ 𝑥" + X𝑎 𝑡 ⋅ Δ𝑡 ⋅ 𝜖" ,
𝑥"#f" ≈ 1	 − gh " fc

/
 𝑥" + X𝑎 𝑡 ⋅ Δ𝑡 ⋅ 𝜖" ,

	𝑥"#f" − 𝑥" ≈ −
X𝑎 𝑡
2

𝑥" ⋅ Δ𝑡 + X𝑎 𝑡 ⋅ Δ𝑡 ⋅ 𝜖" ,

• Recall that 𝑑𝑡 ⋅ 𝜖"  is a Weiner process.

DDPM         SDE

𝑑𝑥" ≈ − gh "
/
𝑥"𝑑𝑡 + X𝑎 𝑡 ⋅ 𝑑𝑡 ⋅ 𝜖".

𝜖( ∼ 𝒩(0, 𝐼)



• Let 𝜇 𝑥, 𝑡 = 0, and 𝜎 𝑥, 𝑡 = 𝜎 𝑡 , then we have:
   Forward: 𝑑𝑥" = 𝜎 𝑡 𝑑𝑤"; 𝑥' ∼ 𝑝',
   Reverse:

•  In the reverse process, we are forcing the samples to 
   drift to high-likelihood regions just like in score-based 
   diffusion model. 
• After discretizing the reverse process, we obtain:

  𝑥4GH4< = 𝑥4< + 𝜎 1 − 𝑡 IΔt ⋅ ∇Jln 𝑝 𝑥=K4< , 1 − 𝑡  + 𝜎 1 − 𝑡 Δt	𝜖4

SDE        Score-based models

Vector field of score function

Stein’s score function

𝑑𝑥′" = 𝜎 1 − 𝑡 /∇!ln 𝑝 𝑥$i"j , 1 − 𝑡 𝑑𝑡 + 𝜎 1 − 𝑡 𝑑𝑤"; 𝑥'j ∼ 𝑝$.


