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Diffusion Models

 Derivation of Diffusion Models + Image Editing Applications (Last Lecture)

* Markov Hierarchical Variational Auto Encoders (MHVAE)

» Diffusion Models are VAEs with Linear Gaussian Autoregressive latent space

ELBO for Diffusion Models is a particular case of ELBO for VAEs with extra structure

* Implementation Details

Latent Diffusion Models (Stable Diffusion) + Controllable generation

A Different Viewpoint of Diffusion Models (Today’s Lecture)

* Denoising Score Matching
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Reverse-time stochastic diffusion equation models are defined and it is shown how most
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Generative Modelling via Score Functions

 Goal: Draw samples from p(x)

* Rich history of sampling methods (MCMC, particle filter, etc.) — we won’t cover these

* So far: Learning p(x) by assuming latent variable model

* Recall PPCA, GMM, VAE, HMM, LDS, DDPM
* Sampling is easy, since one can sample latent variables z and then x from p(x|z)
* Today: Instead of learning p(x) directly, we can turn to learn V,. log p(x)
* This quantity is known as the score function
* Challenges

» Sampling: Even if we had access to score function, how do we draw samples from p(x)?
* Score Estimation: How can we estimate score function from data?

e Diffusion: What does this have to do with diffusion models?



Sampling: Intuition for Score Function

* The score function V. log p(x) is a vector field that points to the direction of
steepest increase in log-likelihood at any given point in data space

The arrows indicate the score G
function vector field — they point ol ;Q;
towards the mode

Data distribution on R?
Darker colors indicate higher probability density



Sampling: Naive ldea

e Simple sampling strategy: start at any point in data space and take some steps in
the direction of the score function (gradient ascent)

Xe41 = X¢ + 1 Vy logp(x)

X=Xt
* Ifn — 0, this process is described by the Ordinary Differential Equation (ODE)
dx =V, logp(x)dt

 However, the trajectories of this ODE converge to samples from only the modes
of the distribution: i.e., the ODE does not explore lower probability regions

Different Samples  Empirical Density of Samples p(x)




Sampling: Insights from Physics
* French physicist Paul Langevin proved exploration can be done by adding noise

dx =V, log p(x)dt + V2B,

* This gives a Stochastic Differential Equation (SDE), where the Brownian motion B;
is Gaussian noise with infinitesimally small variance:

dB, =Vdtz,z~ N0,

* Langevin proved that, as t = oo, the solutions to the SDE visit each x with
probability p(x). That is, this process draws samples from p(x)!

Different Samples Empirical Density p(x)



Langevin Dynamics Convergence Theorem

* Theorem: Consider the Langevin dynamics
dx =V, log p(x)dt + V2B,
where B; is Brownian motion
dB, =Vdtz,z~ N0,

The process (X;);so defines a Markov diffusion that admits p(x) as a unique
invariant distribution. Moreover, if p; denotes the distribution of X;, then

Pt tj D,

0.0)

i.e., the distribution of X; convergestop ast — oo.



Sampling as a Reverse Process

* Langevin dynamics resemble a reverse process: start with samples from a simple
distribution such as N(0, I) and solve Langevin equation to get sample from p(x)

dt + V2B,

X=Xt

dx; = V, log p(x)

* However, we don’t know the distribution p(x), hence we don’t know the score
function V. log p(x). All we have are samples from p(x).

* How can we estimate the score function V,. log p(x) from samples p(x)? Can we
train a deep network that predicts the score by minimizing a reconstruction loss?

1
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Challenges with Learning Score Function

1
argming - Eyp(x) [l |sg(x) — V,, logp(x)||z]

* Challenge 1: Inaccurate score estimation in low data density regions
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* Solution: Perturb data with various levels of Gaussian noise, which “fills” in low density
regions of the space

* Challenge 2: How do we optimize this because we don’t have ground truth score
data to train on?
* Solution: Clever manipulation of score function that we will see later



Perturbing Data: Forward Process

* We can arrive at the forward process mathematically by simply inverting the
Langevin equation

* Instead of starting at N(0, ) and drawing samples from p(x), what if we just
start from p(x), and follow score of standard Gaussian, and end at N(0,1)?

dx =V, log N(0,)dt + V2dB,

e Recall that dB, = Vdt z,z ~ N(0, ). After discretizing we get:
XH_dt —_ (1 — dt)xt + V Zdt Z

* Looks like the forward process we already know!



Back and forth from GMM to Normal distribution

Forward process Reverse process




Summary so Far

* We have shown that with the score function given, we can draw samples from
the underlying data distribution using the Langevin equation

* We described the forward process to get a learning objective (for all t)

1 | :
argming 2 Zx~p(x) _“59 (%,1) =V, logp(xt)“z_

* Next: How to actually learn this without ground truth access to the score
function?



Rewriting the Score Function

* From the forward process, we generated data

= JTxo + /1 -6, €~N(g0,I)

* Let’s cleverly rewrite the score function given this
vxtp(xt)

P(xt)
fotp(thxo)p(Xo) dx

vxtlog p (xt) —

p(x )

T bl )f p(x¢1%0)Vx, log p(x¢|%)p(xo) dxg

[
= J Vy log p(x¢|xo)p(Xolxt) dxg

f\/CY—txo — Xt

= J 1 — C_(t p(XO|xt) de

_ \/EE[XODQ] — Xt
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Denoising Score Matching

* Plugging into our objective before and simplifying, we have

-
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* We have a way to estimate the score without ever needing ground truth score,
which is remarkable

* Moreover, this is exactly our denoising objective from diffusion models!

* Maximizing our ELBO is equivalent to learning the score function at x,!



Learning Score Function Example




Why is this viewpoint useful?

* It unifies diffusion model forward process as following Langevin equation to
transform data distribution into Gaussian distribution

» Different noise schedules just correspond to how fast this transition is

e Connects learning denoisers with estimating the score function, which we can

then use to sample from t
* Allows us to naturally thin

e Our rewriting of the score

ne distribution

k of continuous-time diffusion models

function is called Tweedie’s formula

* Can use it to solve E[xy|x;]| given the score function — one step denoising

* Precisely what is used in DDIM to predict the x

e Conditional Sampling becomes straightforward (see next slide)



Conditional Diffusion Models - Guidance

* Conditional Sampling: Sample from p(x | y) where y is another image, text, etc.

* The score function for this distribution can be obtained via Bayes rule
Vi, logp(xely) = Vi logp(y Ix;) + Vy, logp(xt)
* The second term is already modelled by a unconditional diffusion model!

* For the first term, we could use a classifier. This is known as classifier guidance,
where we scale the effect of classifier by some factor y in front of the first term

Samples from an unconditional diffusion model with classifier guidance, for guidance scales 1.0 (left) and
10.0 (right), taken from Dhariwal & Nichol (2021).



Classifier Free Guidance

* Classifier Guidance required access to a classifier that can handle noisy inputs

* Classifier-free Guidance allows us to do guidance without training any auxiliary
classifiers

Vi, logp, (xe|ly) = yVy, logp(y [x¢) + V,, logp(x;)
= y(Vy, logp(x.ly) — Vy, logp(x.)) + V,, logp(x;)
=1 - V)th logp(x;) + Y Vi, log p(x¢|y)

¥ > 1is found to be the regime that works well

* Train a diffusion model with conditioning dropout: some percentage of the time
(10-20%), just remove the conditioning information, so the model learns to be
both a conditional and unconditional model



Classifier Free Guidance Results

Seems to work better

than classifier guidance
because the “classifier”
is constructed from the
generative model itself

Two sets of samples from OpenAl’'s GLIDE model, for the prompt ‘A stained glass window of a panda eating
bamboo.’, taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right.

Two sets of samples from OpenAl's GLIDE model, for the prompt "A cozy living room with a painting of a
corgi on the wall above a couch and a round coffee table in front of a couch and a vase of flowers on a coffee
table.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right.



Conclusion

* We saw how diffusion models implicitly learn the score function and perform
reverse process sampling using the Langevin equation

* Connects to many core topics in stochastic differential equations and clean mathematical
derivations

* Used the score function viewpoint to easily derive guidance (classifier and
classifier-free) for conditional sampling from diffusion models

* Three great resources for more information

* ICLR Blogpost — Building Diffusion Models Theory From Scratch (https://iclr-
blogposts.github.io/2024/blog/diffusion-theory-from-scratch/)

* Sander Dieleman Blog — Guidance: A Cheat Code for Diffusion Models
(https://sander.ai/2022/05/26/guidance.html)

» See references in the blog posts
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Stochastic Differential Equation (SDE) view

Reverse SDE
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Fokker-Plank equations

Forward Probability ODE

Reverse Probability ODE

Figure from “Score-based generative modeling through stochastic differential equations, Song, et.al. 2020".
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Stochastic Differential Equation

* SDE is a differential equation in which one or more terms are stochastic
processes.

‘ dxt — ‘Ll(xt, t)dt + O'(Xt, t)th ‘

* 1(x;, t)is called as the drift coefficient and o (x,, t) is called the diffusion
coefficient.
* w; is called the Weiner process and has the following properties:

1. Initial zero condition: wy = 0 almost surely.
2. Independent increments: For every t,u = 0, the increments w;,,, — w; are independent of w, for s < t.

3. Gaussian increments: For every t,u = 0, the increments wy,, — wy ~ N(0,ul) .

4. Continuity paths: w; is continuous in t almost surely.

1, o should be Lipschitz continuous in (x, t)

¢ HOW tO Obtaln .'X,'t given XO ? ¢ for the existence and uniqueness of SDE solution.

t

Xt — Xo = fﬂ(xt, tydt + J o(xs, t)dw;
0 0

N - N -

Lebesgue integral  It0 integral




Example of SDEs

* Two distinct cases for the drift and diffusion coefficients in the process

‘ dxt — ‘Ll(xt, t)dt + O'(Xt, t)th ‘

Two-dimensional Wiener (or Brownian motion) process
0.6 T T T T T " -
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dx; = dw;

SDE with zero drift
the process is purely stochastic.

Figure from “Mathematics of Diffusion Models, CVPR 2025 Tutorial, Richard Hartley”.

.....................

dxt — .u'(xt) t)dt

SDE with zero diffusion
the process is purely deterministic.



Reversal of the diffusion process

* Brian Anderson showed this in 1982 which later became a building block in

score-matching diffusion models introduced in 2020.
e The forward SDE

dx; = p(xe, t)dt + o(xe, t)dwe, xo ~ po
has the time-reversal equation:

, (Vx(p(x{_t, 1—t) - o(xi_p, 1 —t)%)
dxt =

p(x!_,,1—1t) — 111 -1) ) dt + o (x;_, 1 — t)dw,

with x; ~ p;, and (w;, w;) being independent Weiner processes.

Fixed forward diffusion process

Noise

Generative reverse denoising process

Figure from “https://cvpr2022-tutorial-diffusion-models.github.io/”.



https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/

SDE—> DDPM Lo~ @D

e Set u(x,t) = — %\/1 — a; - x., and o(x,t) = N\/l — a; for some sufficiently
large integer N.

* We have the forward process: dx; = —%\/1 —a; - xp dt + N1 — a; - dw,.

. : . . 1
* Now we discretize the time with N scales: t = ﬁ, and At = =

* We can write dx; = x;,1 — X;,

1
dx; = Xj1q1 — X; = —5\/1—“1' - X At+\/1—at~ei,

Xjpq = (1—%\/1—ai)xi+\/1—at-ei
* Let N — oo, then we have (1—§\/1—ai) z\/1—1+al~ = \/a;.

* Finally, we havelx;,, = \ax; + /1 — al-el-l which is the same as DDPM.




DDPM —> SDE L
* The forward process in DDPM is given by
Xeyar =V AeXe + \/1 — Q¢ €y,
where t goes fromOto 1, At = %, and N is the number of noise scales.
* Define d(t) = (1 — a;)/At.
* In the limit as N — oo, we have
Xeppr = \/1 —a(t)At - x, + \/Ei(t) At - e,
Xt+at = (1 — a(t)At) Xp T+ m VAL - €,

a(t) ey
xt+At_xtz_Txt'At+ a(t °\/_t'6t,

dx; —@xtdth/a(t -dt - €.

2

* Recall that Vdt - €; is a Weiner process.



SDE —> Score-based models

e Let u(x,t) = 0,and o(x,t) = a(t), then we have:
Forward: dx, = o(t)dw;; x, ~ 1y,

Reverse:‘ dx';, = o(1 — t)zyxln(p(x{_t, 1 — t))ldt + o(1 — t)dw; x ~ py.

|
Stein’s score function

* In the reverse process, we are forcing the samples to
drift to high-likelihood regions just like in score-based
diffusion model.

» After discretizing the reverse process, we obtain:

Xionr = Xt + (1 —t)2At- V, In(p(x]_;, 1 — 1)) +o(1 — t)VAte,

Vector field of score function




